
ASDF
Release b9ac7dc

Matthias Geier

2023-05-31

Contents

1 Introduction 2

2 Position and Orientation 3

3 Elements 4
3.1 <asdf> . 4

3.2 <head> and <body> . 5

3.3 <source> . 5

3.4 <reference> . 6

3.5 <seq> and <par> . 7

3.6 <clip> and <channel> . 8

3.7 <transform> . 10

3.8 <wait> . 16

4 Repetition 17

5 ASDF Splines 18
5.1 Position Splines . 18

5.2 Rotation Splines . 19

5.3 Volume Splines . 19

6 Special Shapes 19
6.1 Square . 19

6.2 Circle . 20

6.3 Helix . 21

6.4 Sinusoidal Oscillation . 21

6.5 Lissajous Figures . 22

7 Implementation Notes 22
7.1 Converting ASDF Rotations to Rotation Matrices . 22

7.2 Converting ASDF Rotations to Quaternions . 31

The ASDF is an XML-based file format for authoring 3D audio scenes.

Online documentation/specification
https://AudioSceneDescriptionFormat.readthedocs.io/

Source code repository (and issue tracker)
https://github.com/AudioSceneDescriptionFormat/asdf

1

https://AudioSceneDescriptionFormat.readthedocs.io/
https://github.com/AudioSceneDescriptionFormat/asdf

Reference implementation (implemented in Rust, with a C API)
https://github.com/AudioSceneDescriptionFormat/asdf-rust

License
Dedicated to the public domain using CC0 – see the file LICENSE for details.

1 Introduction

Let’s start simple, with the file minimal.asd1:

<asdf version="0.4">
<clip file="audio/ukewave.ogg" pos="1 2" />

</asdf>

This plays the contents of the (mono) audio file audio/ukewave.ogg2, coming from a spatial position
of 2 meters in front and 1 meter to the right. For more details on the used coordinate system, see
Position and Orientation (page 3).

If you want to play a file with more than one channel, you can provide positions for each of the
channels, like shown in minimal-multichannel.asd3:

<asdf version="0.4">
<clip file="audio/marimba.ogg">

<channel pos="-1 2" />
<channel pos="1 2" />

</clip>
</asdf>

This plays the contents of the (two-channel) audio file audio/marimba.ogg4, each channel coming
from its specified position. For further details, see <clip> and <channel> (page 8).

The examples above use a few shorthand notations to make frequently used scenarios a bit easier
to type. Expanding most of the shortcuts used in the first example above would lead to the more
complicated ASDF syntax shown in minimal-expanded.asd5:

<?xml version="1.0"?>
<asdf version="0.4">

<head>
<source id="src1" />

</head>
<body>

<seq>
<clip file="audio/ukewave.ogg">

<channel source="src1" pos="1 2 0" />
</clip>

</seq>
</body>

</asdf>

Please note a few changes to the “minimal” version above:

• An XML declaration6 has been added, which is optional in XML 1.0 (but not in XML 1.1).
1 https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/minimal.asd
2 https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/audio/ukewave.ogg
3 https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/minimal-multichannel.asd
4 https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/audio/marimba.ogg
5 https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/minimal-expanded.asd
6 https://www.w3.org/TR/xml/#sec-prolog-dtd

2

https://github.com/AudioSceneDescriptionFormat/asdf-rust
https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/minimal.asd
https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/audio/ukewave.ogg
https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/minimal-multichannel.asd
https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/audio/marimba.ogg
https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/minimal-expanded.asd
https://www.w3.org/TR/xml/#sec-prolog-dtd

• The <head> and <body> (page 5) elements are optional. The <asdf> (page 4) element (including
version number) is always required.

• In the <head> section there is a separate <source> (page 5) element.

• The <body> element implicitly behaves like a <seq> element, see <seq> and <par> (page 7).

• Even though this is not necessary for a mono <clip>, a <channel> element has been provided
explicitly. It has been associated with the <source> (page 5) that was defined in <head>.

• The z-component in pos is optional, see <transform> (page 10).

This still uses the shorthand of specifying the position directly in the <channel> element. As shown
in minimal-expanded-with-explicit-transform.asd7, it can be expanded even further:

<?xml version="1.0"?>
<asdf version="0.4">

<head>
<source id="src1" />

</head>
<body>

<par>
<clip file="audio/ukewave.ogg">

<channel id="channel1" source="src1" />
</clip>
<transform apply-to="channel1" pos="1 2 0" />

</par>
</body>

</asdf>

• Because the <clip> and the <transform> happen at the same time, they are wrapped in a <par>
element, see <seq> and <par> (page 7). Without this <par> element, the <transform> would only
be active after the <clip> is finished (because the <body> element implicitly behaves like a <seq>
element).

• If the clip has only one channel, it doesn’t matter whether the <transform> is applied to
the <clip> or to the <channel>. In this simple case it could be even directly applied to the
<source>.

• The <transform> (page 10) element could be even further expanded to contain the pos informa-
tion in a single <o> sub-element.

2 Position and Orientation

The ASDF uses a right-handed cartesian coordinate system to specify positions in three-dimensional
space. The x-, y- and z-axis can be thought of as pointing towards east, north and up, respectively,
which is sometimes called an ENU system8. However, contrary to typical ENU systems, the default
orientation in the ASDF is towards north, i.e. along the positive y-axis!

To understand the motivation for this choice of default orientation, imagine a treasure map lying on
a table in front of you. The north direction typically points towards the top of the map and the east
direction points to the right. On the other hand, if you had a piece of paper with a mathematical
graph on it, the y-axis would point towards the top of the page and the x-axis would point to the
right. Therefore it makes sense that the x-axis points towards east and the y-axis points northwards,
right? Now imagine that you are sitting at the table with your treasure map in front of you. You will

7 https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/minimal-expanded-with-explicit-transform.
asd

8 https://en.wikipedia.org/wiki/Axes_conventions

3

https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/minimal-expanded-with-explicit-transform.asd
https://en.wikipedia.org/wiki/Axes_conventions

look straight ahead by default, and this happens to be northwards on the map. Therefore, the default
orientation in the ASDF is towards north, which corresponds to the positive y-axis. To complete the
triple of axes, the z-axis points up to the ceiling (or towards the zenith, if your table is in open air).
Positive z-values are above the table, negative z-values are below the table. The resulting coordinate
system is right-handed, which is convenient.

The coordinate values for positions are given in meters. The third coordinate is optional and defaults
to zero.

As mentioned above, the default orientation (sometimes called view direction) is along the positive
y-axis. To fully specify all three degrees of freedom, the default up direction is set to the positive z-axis
(which should be an unsurprising choice). For specifying arbitrary rotations relative to this default
orientation, up to three Tait–Bryan angles9 can be specified. The first angle (azimuth) rotates around
the z-axis, the second angle (elevation) around the (previously rotated) x-axis and the third angle (roll)
around the (previously rotated) y-axis.

All angles are given in degrees. The elevation and roll angles are optional, with a default of zero. The
sign of the rotation angles follows the right hand rule10. Rotations are specified in degrees because that
is familiar to most people. However, for any further calculations in an ASDF library, the angles should
be immediately converted to quaternions or rotation matrices, see Implementation Notes (page 22).

Multiple translations/rotations can be nested, which means that all coordinates are local with respect
to the parent transform. For more details, see Nested <transform> (page 16).

3 Elements

The following sections describe all XML elements that can be used in an ASDF file.

3.1 <asdf>

An ASDF file must contain a single top-level <asdf> element with a required version attribute.
Currently, only version="0.4" is supported.

The <asdf> element can optionally contain <head> and <body> (page 5) sub-elements.

If there is no <body> element, all sub-elements of <asdf> (except an optional <head> element) are
treated as if they were contained in a <body> element, which in turn behaves like an implicit <seq>
(page 7), see <head> and <body> (page 5). For example, the clips in implicit-seq.asd11 are played in
sequence:

<asdf version="0.4">
<clip file="audio/xmas.wav" pos="-2.5 0" />
<clip file="audio/ukewave.ogg" pos="2.5 0" />

</asdf>

9 https://en.wikipedia.org/wiki/Euler_angles#Tait\T1\textendash{}Bryan_angles
10 https://en.wikipedia.org/wiki/Right-hand_rule#Rotations
11 https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/implicit-seq.asd

4

https://en.wikipedia.org/wiki/Euler_angles#Tait\T1\textendash {}Bryan_angles
https://en.wikipedia.org/wiki/Right-hand_rule#Rotations
https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/implicit-seq.asd

3.2 <head> and <body>

Both <head> and <body> are optional. If there is a <head> element, it must be the first sub-element of
<asdf> (page 4).

The <head> element can contain <source> (page 5) sub-elements and an optional <reference> (page 6).
All elements within <head> exist for the whole duration of the scene. If they contain transform
attributes like pos or rot, those values are static. Additional <transform> (page 10) elements can be
used in the <body> to offset those values dynamically.

The <body> element can contain <seq> and <par> (page 7) elements, as well as <clip> (page 8) and
<transform> (page 10) elements. If the <body> element contains multiple sub-elements, it acts like an
implicit <seq> (page 7) element.

3.3 <source>

<source> elements are defined within the <head> element and all sources exist for the entire duration
of the scene.

File Inputs

<clip> and <channel> (page 8) elements can provide audio signals for <source> elements using the
source attribute. If no source attribute is given, an unnamed <source> is implicitly created.

A <source> can be fed by multiple <clip> elements over time, but only if they don’t overlap. If the
port attribute (see below) is given, no <clip> elements can be assigned.

An implementation may re-use the same unnamed <source> for multiple non-overlapping <clip>
elements, but this is not required.

Live Inputs

The port attribute can be used to provide live input signals, for example from microphones, external
sound hardware or any software capable of producing audio signals (and connecting them with the
software loading the ASDF scene).

The content of the port attribute isn’t strictly specified and it is up to the reproduction software to
interpret it.

For example, the SSR12 provides an --input-prefix option to which the content of the port attribute
is appended. By default, the prefix is system:capture_ and appending numbers starting with 1 will
select the corresponding hardware input channels.

The scene live-sources.asd13 shows an example of using the first 4 hardware inputs as sources:

<asdf version="0.4">
<head>

<source port="1" name="live input 1" pos="-1.5 2" />
<source port="2" name="live input 2" pos="-0.5 2" />
<source port="3" name="live input 3" pos="0.5 2" />
<source port="4" name="live input 4" pos="1.5 2" />

</head>
</asdf>

12 http://spatialaudio.net/ssr/
13 https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/live-sources.asd

5

http://spatialaudio.net/ssr/
https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/live-sources.asd

Live sources and sources driven by audio files can be mixed in one scene and <transform> (page 10)
elements can apply to either. See e.g. live-sources-and-file-sources.asd14:

<asdf version="0.4">
<head>

<source port="1" name="live input 1" pos="-1.5 2" />
<source port="2" name="live input 2" pos="-0.5 2" />
<source port="3" name="live input 3" id="three" />
<source port="4" name="live input 4" pos="1.5 2" />

</head>
<body>

<clip file="audio/xmas.wav" pos="0 2.5" />
<!-- Source "three" is only active during this time -->
<transform apply-to="three" pos="0.5 2" dur="1 min" />
<clip file="audio/xmas.wav" pos="0 2.5" />

</body>
</asdf>

Transform Attributes

Any <source> element with an id attribute can be the target of a <transform> (page 10) (using the
apply-to attribute). Like <clip> and <channel> (page 8), <source> can also use transform attributes
like pos, rot etc. as a shortcut, see source-transform.asd15:

<asdf version="0.4">
<head>

<source id="src-one" pos="-1 1" />
<source id="src-two" pos="1 1" />

</head>
<clip file="audio/marimba.ogg">

<channel source="src-one" />
<channel source="src-two" />

</clip>
<clip file="audio/marimba.ogg">

<channel source="src-two" />
<channel source="src-one" />

</clip>
</asdf>

3.4 <reference>

The so-called reference point is a generalization of a listener point. In a headphone-based reproduction
system it corresponds to the position (and orientation) of the listener’s head in the virtual scene. In
a loudspeaker-based system there might be multiple listeners, but the loudspeaker setup should still
have a single reference point, which is typically somewhere in the center of the setup.

The <reference> can be specified explicitly within the <head> element and it can optionally have
static transform attributes like pos and rot, as in the example scene reference-transform.asd16:

14 https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/live-sources-and-file-sources.asd
15 https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/source-transform.asd
16 https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/reference-transform.asd

6

https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/live-sources-and-file-sources.asd
https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/source-transform.asd
https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/reference-transform.asd

<asdf version="0.4">
<head>

<reference pos="-1 1" rot="-45" />
</head>

</asdf>

At most one <reference> element can be specified, and it implicitly has the reserved ID "reference
", which can be used as the target of a <transform> (page 10). If no <reference> element is given, the
reference point can still be transformed using apply-to="reference", as in implicit-reference.
asd17:

<asdf version="0.4">
<par>

<clip file="audio/ukewave.ogg" pos="0 0" />
<transform apply-to="reference">

<o pos="0 -1" />
<o pos="-2 1" />
<o pos="2 1" />
<o pos="closed" />

</transform>
</par>

</asdf>

3.5 <seq> and <par>

Both audio clips and <transform> elements are objects that have a certain duration. They can be
placed in the timeline one after another by putting them into a <seq> (which means sequential) element.
To delay an object or to create a pause between two objects, a <wait> (page 16) element can be inserted
into the sequence.

To reproduce two or more clips and/or <transform> elements at the same time, you can put them
into a <par> (which means parallel) element.

<seq> and <par> elements can be arbitrarily nested.

For a simple example, see seq-par.asd18:

<asdf version="0.4">
<par>

<clip file="audio/ukewave.ogg" pos="0 2" />
<seq>

<clip file="audio/marimba.ogg">
<channel pos="-1 2" />
<channel pos="1 2" />

</clip>
<clip file="audio/xmas.wav" pos="-1.5 0" />

</seq>
</par>

</asdf>

If there is no <body> element, the main <asdf> (page 4) element implicitly behaves like a <seq> ele-
ment, i.e. all contained elements are played in sequence, like in the example file implicit-seq.asd19:

17 https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/implicit-reference.asd
18 https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/seq-par.asd
19 https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/implicit-seq.asd

7

https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/implicit-reference.asd
https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/implicit-reference.asd
https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/seq-par.asd
https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/implicit-seq.asd

<asdf version="0.4">
<clip file="audio/xmas.wav" pos="-2.5 0" />
<clip file="audio/ukewave.ogg" pos="2.5 0" />

</asdf>

Within a <par> element, the first sub-element determines the duration of the whole <par> element.
Any following sub-elements must not be longer than the first. A useful pattern is to use a <clip>
as first sub-element (which defines the length of the <par>) and one or more <transform> elements
afterwards, which will by default “inherit” the duration of the <clip>.

repeat

<seq> and <par> elements can be repeated, see Repetition (page 17).

3.6 <clip> and <channel>

To load an audio file, a <clip> element can be inserted at the spot in the timeline where it should be
played back. Each <channel> of a multi-channel file can have its own static transform attributes (pos,
rot, etc.), as shown in the example scene minimal-multichannel.asd20:

<asdf version="0.4">
<clip file="audio/marimba.ogg">

<channel pos="-1 2" />
<channel pos="1 2" />

</clip>
</asdf>

If the audio file only has a single channel, an explicit <channel> element is not necessary. If desired,
transform attributes can be applied to the <clip> element itself, see minimal.asd21:

<asdf version="0.4">
<clip file="audio/ukewave.ogg" pos="1 2" />

</asdf>

Volume control is part of the <transform> (page 10) mechanism. A constant volume can be specified
with the vol attribute of <clip> and/or <channel>, a dynamic volume envelope can be applied with
a <transform> element that’s running in parallel to the <clip> – see <seq> and <par> (page 7).

As selecting-channels.asd22 shows, not all channels of a <clip> have to be used:

<asdf version="0.4">
<par repeat="3">

<seq>
<wait dur="1.18" />
<clip file="audio/marimba.ogg">

<channel pos="-2 2" />
<!-- NB: second channel is unused -->

</clip>
</seq>
<clip file="audio/marimba.ogg">

<channel skip="1" />
(continues on next page)

20 https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/minimal-multichannel.asd
21 https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/minimal.asd
22 https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/selecting-channels.asd

8

https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/minimal-multichannel.asd
https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/minimal.asd
https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/selecting-channels.asd

(continued from previous page)

<channel pos="2 2" />
</clip>

</par>
</asdf>

Audio clips are always played in full length. Audio files should be trimmed to the desired length
during scene authoring.

repeat

<clip> elements can be repeated, see Repetition (page 17).

id

Both <clip> and <channel> elements can be the target of a <transform> (page 10), as long as they
have an id attribute. <transform> and <clip> can have differing begin and end times. A single
<transform> can apply to multiple <clip> and/or <channel> elements. A <clip> can be trans-
formed by multiple <transform> elements over time. The <transform> elements can overlap, but
only one of them can contain a rotation in this case (because the order of applying those rotations
would be ambiguous).

source

If no source attribute is given, a <source> is created implicitly for each channel. The order of implicit
sources is unspecified. An implementation may re-use an implicit source for multiple clips (as long as
the clips don’t overlap in time), but this is not required.

Individual audio channels can also be explicitly assigned to existing <source> (page 5) elements, as
demonstrated in source-transform.asd23:

<asdf version="0.4">
<head>

<source id="src-one" pos="-1 1" />
<source id="src-two" pos="1 1" />

</head>
<clip file="audio/marimba.ogg">

<channel source="src-one" />
<channel source="src-two" />

</clip>
<clip file="audio/marimba.ogg">

<channel source="src-two" />
<channel source="src-one" />

</clip>
</asdf>

This illustrates that different <channel> elements can be assigned to the same <source>. However,
this only works if the channels don’t overlap in time.

23 https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/source-transform.asd

9

https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/source-transform.asd

3.7 <transform>

A constant transform can be simply added to a <clip> element, like the pos attribute in minimal.
asd24:

<asdf version="0.4">
<clip file="audio/ukewave.ogg" pos="1 2" />

</asdf>

Such attributes (pos, rot etc.) can be added to <clip> and <channel> (page 8), as well as <source>
(page 5) and <reference> (page 6).

These attributes can be seen as shorthand notation to avoid using <transform> elements for
such simple cases. Of course, explicit <transform> elements can also be used, as shown in
minimal-expanded-with-explicit-transform.asd25:

<?xml version="1.0"?>
<asdf version="0.4">

<head>
<source id="src1" />

</head>
<body>

<par>
<clip file="audio/ukewave.ogg">

<channel id="channel1" source="src1" />
</clip>
<transform apply-to="channel1" pos="1 2 0" />

</par>
</body>

</asdf>

apply-to

The required attribute apply-to defines the target(s) for the transform. This is a space-separated list
of IDs of any <source> (page 5), <clip> and <channel> (page 8) elements, as well as other <transform>
elements. The special ID "reference" can be used to target the <reference> (page 6).

A <transform> element can apply to multiple objects. An object can be the target of multiple trans-
forms, as long as at most one of them contains a rotation.

pos

This is named after position, but technically, the term translation would be more appropriate. The final
position of a sound source – or the <reference> (page 6) – can be the result of multiple translations (and
maybe rotations as well, see below) applied to the default position (0, 0, 0).

The pos attribute contains a space-separated list of two or three coordinate values (in meters). If only
two values are given, the third one is assumed to be zero. For coordinate system conventions, see
Position and Orientation (page 3).

24 https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/minimal.asd
25 https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/minimal-expanded-with-explicit-transform.

asd

10

https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/minimal.asd
https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/minimal.asd
https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/minimal-expanded-with-explicit-transform.asd

rot

Unlike pos, this is aptly named after rotation. The final orientation of a sound source – or the <reference>
(page 6) – can be the result of multiple rotations, applied to the default orientation (0, 0, 0).

The rot attribute contains a space-separated list of up to three angles (in degrees) called azimuth,
elevation and roll. Only azimuth is required, the others default to zero if not specified. For angle
conventions, see Position and Orientation (page 3).

The range of angle values is not limited, but the represented rotations are cyclically repeating and
the number of turns is irrelevant. This means that the angles -90 and 270 both specify the same
rotation. When using a sequence of rotations to define a rotation spline (see the <o> element below),
the smallest possible angular difference between neighboring rotations is used. For example, an angle
of 270 degrees followed by an angle of 0 degrees will lead to a rotation of 90 degrees. An angle of 180

degrees followed by -180 degrees will lead to no rotation at all.

The order of applying translations and rotations matters: within a <transform> element, pos is ap-
plied after rot. This means that the target of a <transform> is first rotated around the (local) origin
and then translated to its final position.

vol

A (linear) volume change can be specified as a non-negative decimal value. Using vol="0" results
in silence, vol="0.5" corresponds to an attenuation of about 6 decibels, vol="1" doesn’t change the
volume and vol="2" corresponds to a boost of about 6 decibels.

<o>

A <transform> element can contain zero, one or more <o> elements. Let’s call them transform nodes.
A <transform> with a single <o> element is able to describe a constant transform. If we specify two
transform nodes, we can define a linear movement between two points. This is shown in two-pos.asd26:

<asdf version="0.4">
<par>

<clip id="ukulele" file="audio/ukewave.ogg" />
<transform apply-to="ukulele">

<o pos="-2 2" />
<o pos="2 2" />

</transform>
</par>

</asdf>

You can also specify two rotations, which leads to a (spherical) linear interpolation between them. See
two-rot.asd27:

<asdf version="0.4">
<par>

<clip id="marimba" file="audio/marimba.ogg">
<channel pos="-1 2" />
<channel pos="1 2" />

</clip>
<transform apply-to="marimba">

<o rot="45" />
(continues on next page)

26 https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/two-pos.asd
27 https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/two-rot.asd

11

https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/two-pos.asd
https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/two-rot.asd

(continued from previous page)

<o rot="-45" />
</transform>

</par>
</asdf>

In fact, two nodes are not a special case. As soon as there is more than one node, a spline is constructed
that passes through all the nodes. In the case of two nodes, this leads to a linear path, but with more
than two nodes, curved trajectories can be created, as for example in minimal-spline.asd28:

<asdf version="0.4">
<par>

<clip id="ukulele" file="audio/ukewave.ogg" />
<transform apply-to="ukulele">

<o pos="-2 -2" />
<o pos="-2 2" />
<o pos="2 2" />
<o pos="2 -2" />

</transform>
</par>

</asdf>

In addition to pos and rot, the vol attribute can also be animated, see transform-vol.asd29:

<asdf version="0.4">
<par>

<clip id="ukulele" file="audio/ukewave.ogg" pos="0 1.5" />
<transform apply-to="ukulele">

<o vol="0" />
<o vol="1" />
<o vol="0" />
<o vol="1.5" />
<o vol="0" />

</transform>
</par>

</asdf>

Note: This should only be used for relatively slow volume changes, because the renderer might
only apply them on a block-by-block basis. If you need fast envelopes, those should be applied by
modifying the audio file in a waveform editor.

28 https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/minimal-spline.asd
29 https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/transform-vol.asd

12

https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/minimal-spline.asd
https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/transform-vol.asd

time

By default, sources move with a constant speed along trajectories, but if desired, time values can be
assigned to any node. The speed will be varied such that the source passes those nodes at the given
times. The first node always implicitly has time="0". See spline-time.asd30:

<asdf version="0.4">
<par>

<clip id="ukulele" file="audio/ukewave.ogg" />
<transform apply-to="ukulele">

<o pos="-2 -2" />
<o pos="-2 2" />
<o pos="2 2" time="5" />
<o pos="2 -2" />

</transform>
</par>

</asdf>

If not specified otherwise, time values are interpreted as seconds. Hours and minutes can be spelled
in HH:MM:SS.sss format (where hours and fractions of seconds are optional) or using the h and min
suffixes. For an example, see spline-time-hh-mm-ss.asd31:

<asdf version="0.4">
<par>

<clip id="ukulele" file="audio/ukewave.ogg" />
<transform apply-to="ukulele">

<o pos="-2 -2" />
<o pos="-2 2" time="0:10" />
<o pos="2 2" time="0.5 min" />
<o pos="2 -2" />

</transform>
</par>

</asdf>

Time values can also be given in percent, where 100% is the total duration of (one repetition of) the
<transform>. See spline-time-percent.asd32:

<asdf version="0.4">
<par>

<clip id="ukulele" file="audio/ukewave.ogg" />
<transform apply-to="ukulele">

<o pos="-2 -2" />
<o pos="-2 2" time="10%" />
<o pos="2 2" time="50%" />
<o pos="2 -2" />

</transform>
</par>

</asdf>

If the <transform> doesn’t have a dur attribute (see below), the last node can have an explicit time
value, but a percentage is not allowed. If unspecified, time="100%" is implied, i.e. the <transform>
always ends with the last transform node.

If the time value of a node is not specified, it is deduced from the surrounding nodes.
30 https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/spline-time.asd
31 https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/spline-time-hh-mm-ss.asd
32 https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/spline-time-percent.asd

13

https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/spline-time.asd
https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/spline-time-hh-mm-ss.asd
https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/spline-time-percent.asd

speed

In addition to time values, concrete speed values can also be specified. However, not all speed values
are allowed. In order to provide smooth movements, the possible speed values are limited to a certain
range. The speed is given in meters per second.

For an example, see spline-speed.asd33:

<asdf version="0.4">
<par>

<clip id="ukulele" file="audio/ukewave.ogg" />
<transform apply-to="ukulele">

<o pos="-2 -2" speed="0" />
<o pos="-2 2" />
<o pos="2 2" time="15" speed="0.5" />
<o pos="2 -2" />

</transform>
</par>

</asdf>

tension/continuity/bias

The ASDF uses Kochanek–Bartels Splines34, which means that the so-called TCB attributes tension,
continuity and bias (each ranging from -1.0 to 1.0 with a default of 0.0) can be used. These
attributes can be applied to individual transform nodes or to the whole <transform>, as shown in
spline-tcb.asd35:

<asdf version="0.4">
<par>

<clip file="audio/marimba.ogg">
<channel id="left" />
<channel id="right" />

</clip>
<transform apply-to="left" tension="-0.5">

<o pos="-2 -2" />
<o pos="-2 2" time="33%" />
<o pos="2 2" time="66%" />
<o pos="2 -2" />

</transform>
<transform apply-to="right">

<o pos="-2 -2" />
<o pos="-2 2" bias="-1" time="33%" />
<o pos="2 2" bias="1" time="66%" />
<o pos="2 -2" />

</transform>
</par>

</asdf>

In most cases, specifying TCB values will not be necessary, but they can be useful for creating straight
lines, sharp edges, circles and other Special Shapes (page 19).

33 https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/spline-speed.asd
34 https://splines.readthedocs.io/en/latest/euclidean/kochanek-bartels.html
35 https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/spline-tcb.asd

14

https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/spline-speed.asd
https://splines.readthedocs.io/en/latest/euclidean/kochanek-bartels.html
https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/spline-tcb.asd

TCB attributes can also be used for rot trajectories, leading to Kochanek–Bartels-like Rotation
Splines36.

Mixed Transform Attributes

We have seen that pos, rot and vol trajectories can be created. However, they can also be combined
into a single trajectory.

None of the transform attributes are required, but if one of the attributes is used in any transform node,
it also has to be specified in the first and last node. In other words, missing values are interpolated
but not extrapolated.

The scene mixed-transform-attributes.asd37 illustrates this in an example trajectory:

<asdf version="0.4">
<par>

<clip id="marimba" file="audio/marimba.ogg">
<channel pos="-1 0" />
<channel pos="1 0" />

</clip>
<transform apply-to="marimba">

<o pos="0 -2" rot="-20" vol="1" />
<o pos="0 0" time="1s" />
<o vol="1" />
<o rot="0" time="2s" />
<o vol="0" />
<o vol="1" time="65%" />
<o pos="0 2" rot="20" vol="1"/>

</transform>
</par>

</asdf>

repeat

<transform> elements can be repeated, see Repetition (page 17).

dur

If the last transform node has its time attribute set, this will determine the duration of the
<transform>. Alternatively, the duration of a <transform> can be specified with the dur attribute,
which allows the same syntax as the time attribute of transform nodes. If there are repetitions, the
duration is that of a single repetition. A percentage can be given, which is relative to the duration of
(one repetition of) the parent element.

If no duration is given, and the <transform> is part of a <par> container, the duration is taken from
the <par> container (whose duration might be provided by its first sub-element). See <seq> and <par>
(page 7).

36 https://splines.readthedocs.io/en/latest/rotation/kochanek-bartels.html
37 https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/mixed-transform-attributes.asd

15

https://splines.readthedocs.io/en/latest/rotation/kochanek-bartels.html
https://splines.readthedocs.io/en/latest/rotation/kochanek-bartels.html
https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/mixed-transform-attributes.asd

Nested <transform>

Any <transform> that has an id attribute can be used as the target of another <transform>. The
transforms can have different begin and end times. They only have an effect while they are active.

Multiple <transform> elements can target the same object, but at most one of them can specify a
rotation.

An example of nested transforms can be seen in nested-transforms.asd38:

<asdf version="0.4">
<par>

<clip id="ukulele" file="audio/ukewave.ogg" pos="-2 -2" />
<transform id="horizontal-movement" apply-to="ukulele" repeat="10">

<o pos="2 4" />
<o pos="0 2" />
<o pos="2 0" />
<o pos="4 2" />
<o pos="closed" />

</transform>
<transform apply-to="horizontal-movement">

<o rot="0" />
<o rot="0 0 90" />
<o rot="0 0 180" />

</transform>
</par>

</asdf>

The <clip> defines a static position, which is then dynamically translated in the horizontal plane
according to the <transform> named horizontal-movement. This horizontal movement is then
transformed again, this time with a dynamic rotation around the roll axis.

Creating Groups With <transform>

There is no dedicated “group” element, but a <transform> with multiple targets in the apply-to
attribute is essentially defining a group. All transform attributes are optional, allowing us to create a
group by using a non-transforming <transform>:

<transform id="my-group" apply-to="target1 target2 my-other-target" />

This group can then in turn be the target of further <transform> elements.

3.8 <wait>

This can be used to wait for some time, see e.g. wait.asd39:

<asdf version="0.4">
<clip file="audio/xmas.wav" pos="-1.5 1" />
<wait dur="5" />
<clip file="audio/ukewave.ogg" pos="1.5 1" />

</asdf>

38 https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/nested-transforms.asd
39 https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/wait.asd

16

https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/nested-transforms.asd
https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/wait.asd

dur

The wait duration can be given either as a time duration or as a percentage of the parent duration.
The same syntax as in the time (page 13) attribute of transform nodes is supported.

4 Repetition

<clip> (page 8), <transform> (page 10), <seq> and <par> (page 7) elements can be repeated using the
repeat attribute. Only full repetitions (i.e. integer values) are supported.

For an example of all elements that support repeat, see repeat.asd40:

<asdf version="0.4">
<par repeat="5">

<clip id="ukulele" file="audio/ukewave.ogg" repeat="2" />
<seq repeat="3">

<transform apply-to="ukulele" dur="20%">
<o pos="0 2" />
<o pos="2 0" />
<o pos="0 -2" />
<o pos="-2 0" />
<o pos="closed" />

</transform>
<transform apply-to="ukulele" repeat="4">

<o pos="0 2" />
<o pos="3 2" />
<o pos="-3 2" />
<o pos="closed" />

</transform>
</seq>

</par>
</asdf>

It’s not possible to repeat an element forever, but you might as well just use a huge number of repeti-
tions, as shown in repeat-nearly-indefinitely.asd41:

<asdf version="0.4">
<par repeat="999999">

<clip id="ukulele" file="audio/ukewave.ogg" />
<transform apply-to="ukulele" repeat="4">

<o pos="0 2" />
<o pos="2 0" />
<o pos="0 -2" />
<o pos="-2 0" />
<o pos="closed" />

</transform>
</par>

</asdf>

40 https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/repeat.asd
41 https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/repeat-nearly-indefinitely.asd

17

https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/repeat.asd
https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/repeat-nearly-indefinitely.asd

5 ASDF Splines

Knowing the details about the splines used in the ASDF is not necessary to create scenes. However, it
might still be interesting to know why the shape and behavior of trajectories is the way it is.

A reference implementation of ASDF splines is available at https://github.com/
AudioSceneDescriptionFormat/asdfspline-rust. This library is implemented in Rust42 and it
provides language bindings for C43 and Python44.

We refer to a general definition of splines and their properties45 and to detailed background infor-
mation about all the different types of Euclidean splines46 and rotation splines47 mentioned here,
including their mathematical derivation and their individual properties.

5.1 Position Splines

The most obvious type of splines in the ASDF are position splines. The idea is that a scene author
provides a sequence of positions in three-dimensional space and an ASDF library creates a smooth
curve that goes through all of them. The scene author can also provide the times at which the positions
should be reached, as well as – with certain limitations – the speed at those positions.

The ASDF uses (cubic) Kochanek–Bartels Splines48, which provide three parameters per control point:
tension, continuity and bias, which can be abbreviated to TCB. These TCB parameters allow changing the
shape of the resulting curve without changing the original sequence of positions. The possible values
range from -1 to 1, with 0 being the default. Kochanek–Bartels splines are a superset of the probably
more familiar Catmull–Rom Splines49. If all TCB values are zero, the two splines are identical.

To be guaranteed to avoid cusps and self-intersections (assuming default TCB values), Centripetal
Parameterization50 is used. This, however, means that the parameter values cannot be chosen freely
anymore. Since we want to be able to specify the times when certain control points are reached (and
to some degree the speed along the trajectory), we cannot directly interpret the parameter value as
elapsed time. As a first step, we re-parameterize the spline to have constant speed, which is also
known as Arc-Length Parameterization51.

Having constant speed trajectories is useful, but only being able to use constant speed is also quite
limiting. Therefore, on top of arc-length parameterization, ASDF splines are also re-parameterized
with a monotone spline52. This means that for each position in the spline, we can specify the time
when this position should be reached. We can even specify the speed at these positions (as long as the
monotonicity of the re-parameterization spline can be maintained). See the section about <transform>
(page 10) for details.

It might have been tempting to use Bézier Splines53 due to their widespread use in 2D drawing
software. However, finding appropriate drag points in three-dimensional space is very hard compared
to simply defining a sequence of 3D positions. Similarly, it would be quite cumbersome to explicitly
define three-dimensional tangent vectors for use with Hermite Splines54.

42 https://www.rust-lang.org/
43 https://www.open-std.org/jtc1/sc22/wg14/
44 https://www.python.org/
45 https://splines.readthedocs.io/en/latest/euclidean/splines.html
46 https://splines.readthedocs.io/en/latest/euclidean/index.html
47 https://splines.readthedocs.io/en/latest/rotation/index.html
48 https://splines.readthedocs.io/en/latest/euclidean/kochanek-bartels.html
49 https://splines.readthedocs.io/en/latest/euclidean/catmull-rom.html
50 https://splines.readthedocs.io/en/latest/euclidean/catmull-rom-properties.html#Centripetal-Parameterization
51 https://splines.readthedocs.io/en/latest/euclidean/re-parameterization.html#Arc-Length-Parameterization
52 https://splines.readthedocs.io/en/latest/euclidean/re-parameterization.html#Spline-Based-Re-Parameterization
53 https://splines.readthedocs.io/en/latest/euclidean/bezier.html
54 https://splines.readthedocs.io/en/latest/euclidean/hermite.html

18

https://github.com/AudioSceneDescriptionFormat/asdfspline-rust
https://github.com/AudioSceneDescriptionFormat/asdfspline-rust
https://www.rust-lang.org/
https://www.open-std.org/jtc1/sc22/wg14/
https://www.python.org/
https://splines.readthedocs.io/en/latest/euclidean/splines.html
https://splines.readthedocs.io/en/latest/euclidean/index.html
https://splines.readthedocs.io/en/latest/rotation/index.html
https://splines.readthedocs.io/en/latest/euclidean/kochanek-bartels.html
https://splines.readthedocs.io/en/latest/euclidean/catmull-rom.html
https://splines.readthedocs.io/en/latest/euclidean/catmull-rom-properties.html#Centripetal-Parameterization
https://splines.readthedocs.io/en/latest/euclidean/catmull-rom-properties.html#Centripetal-Parameterization
https://splines.readthedocs.io/en/latest/euclidean/re-parameterization.html#Arc-Length-Parameterization
https://splines.readthedocs.io/en/latest/euclidean/re-parameterization.html#Spline-Based-Re-Parameterization
https://splines.readthedocs.io/en/latest/euclidean/re-parameterization.html#Spline-Based-Re-Parameterization
https://splines.readthedocs.io/en/latest/euclidean/bezier.html
https://splines.readthedocs.io/en/latest/euclidean/hermite.html

5.2 Rotation Splines

When a scene author provides a sequence of orientations for sound sources or groups of sound sources,
the values between the given orientations will be smoothly interpolated.

The same kind of splines are used as for positions, just modified to work with rotations. Centripetal
Kochanek–Bartels-like Rotation Splines55 are used, which are a superset of Catmull–Rom-Like Rota-
tion Splines56. If specified, the same TCB values apply to both position and rotation splines. The
rotation splines are arc-length parameterized by default, which means that they have a constant an-
gular speed. Time instances can be specified for any of the given rotations, which in turn control the
changing angular speeds along the spline. The angular speed cannot be specified explicitly, though.
This would be technically possible, but it is currently not implemented because specifying an angular
speed (for example in degrees per second) seems unintuitive. However, this might be added in a
future ASDF version.

5.3 Volume Splines

The volume of the <reference> (page 6), of <source> (page 5) elements and of groups of sources can
be changed over time. Since volume can be applied just as translation and rotation, it is part of the
<transform> (page 10) attributes, which can be applied to anything that has an id attribute.

Volume values should change smoothly, so they are controlled with splines as well. An important
property of those splines is that they must not produce interpolated values that overshoot the given
local maximum values, nor should they produce negative values. This can be ensured by using Piece-
wise Monotone Interpolation57.

6 Special Shapes

There are no pre-defined special shapes in the ASDF. All trajectories use the same underlying type of
spline – see ASDF Splines (page 18).

6.1 Square

Trajectories in the ASDF are smooth curves by default, and a little extra effort is required to create
movements with sharp corners. There are two simple settings to get straight line segments: tension=
"1" or continuity="-1". Both options are shown in square.asd58:

<asdf version="0.4">
<par>

<clip file="audio/marimba.ogg">
<channel id="one" />
<channel id="two" />

</clip>
<transform apply-to="one" tension="1">

<o pos="0 2" />
<o pos="-2 0" />
<o pos="0 -2" />
<o pos="2 0" />
<o pos="closed" />

(continues on next page)

55 https://splines.readthedocs.io/en/latest/rotation/kochanek-bartels.html
56 https://splines.readthedocs.io/en/latest/rotation/catmull-rom-non-uniform.html
57 https://splines.readthedocs.io/en/latest/euclidean/piecewise-monotone.html
58 https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/square.asd

19

https://splines.readthedocs.io/en/latest/rotation/kochanek-bartels.html
https://splines.readthedocs.io/en/latest/rotation/catmull-rom-non-uniform.html
https://splines.readthedocs.io/en/latest/rotation/catmull-rom-non-uniform.html
https://splines.readthedocs.io/en/latest/euclidean/piecewise-monotone.html
https://splines.readthedocs.io/en/latest/euclidean/piecewise-monotone.html
https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/square.asd

(continued from previous page)

</transform>
<transform apply-to="two" continuity="-1">

<o pos="0 2" />
<o pos="2 0" />
<o pos="0 -2" />
<o pos="-2 0" />
<o pos="closed" />

</transform>
</par>

</asdf>

6.2 Circle

Non-rational cubic polynomial curves – which is the type of curve the ASDF uses for position trajec-
tories – cannot exactly describe circles. But this is no problem, because circles can be approximated
very closely. This can be done by providing the corner points of a square and using a tension value
of about -0.66. However, there is actually a way to create exact circles: by applying a rotation spline
to a translated object. The example scene circle.asd59 shows both approaches:

<asdf version="0.4">
<par>

<clip file="audio/marimba.ogg">
<channel id="one" pos="0 2" />
<channel id="two" />

</clip>
<!-- this is a perfect circle: -->
<transform apply-to="one">

<o rot="-10" />
<o rot="-100" />
<o rot="-190" />
<o rot="-280" />
<o rot="closed" />

</transform>
<!-- this is extremely close to a circle: -->
<transform apply-to="two" tension="-0.66">

<o pos="0 2" />
<o pos="2 0" />
<o pos="0 -2" />
<o pos="-2 0" />
<o pos="closed" />

</transform>
</par>

</asdf>

In this example, the center of rotation is the origin. If the center of rotation is supposed to be some-
where else, it can be moved by applying a new <transform> element with the desired pos attribute
to the <transform> that does the rotation.

59 https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/circle.asd

20

https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/circle.asd

6.3 Helix

A helical movement can be created by combining a (repeated) circular movement (using one of the
methods shown above) with a linear movement perpendicular to the plane of the circle. This is shown
in helix.asd60:

<asdf version="0.4">
<par>

<clip id="ukulele" file="audio/ukewave.ogg" pos="-2 0" />
<transform id="circular-motion" apply-to="ukulele" repeat="10">

<o rot="0 0 0" />
<o rot="0 0 90" />
<o rot="0 0 180" />
<o rot="0 0 -90" />
<o rot="closed" />

</transform>
<transform id="forward-motion" apply-to="circular-motion">

<o pos="0 -2" />
<o pos="0 2" />

</transform>
</par>

</asdf>

In this example, the <clip> is offset to the left and a rotation spline rotates this offset multiple times
around the roll axis. This circular motion is then translated along the default view direction. In this
case, it doesn’t matter if forward-motion is applied to circular-motion or directly to ukulele.

6.4 Sinusoidal Oscillation

Sine waves are not directly supported by the ASDF, but they can be approximated to some degree. By
setting speed="0" at the desired maxima and minima, something similar to sine and cosine oscilla-
tions can be created. This is illustrated in sine-wave.asd61:

<asdf version="0.4">
<par>

<clip file="audio/marimba.ogg">
<channel id="one" />
<channel id="two" pos="0 2" />

</clip>
<transform id="left-right-motion" apply-to="one two" repeat="2">

<o pos="0 0" />
<o pos="2 0" speed="0" time="25%" />
<o pos="-2 0" speed="0" time="75%" />
<o pos="closed" />

</transform>
<transform id="forward-backward-motion" apply-to="one" repeat="2">

<o pos="0 2" speed="0" />
<o pos="0 -2" speed="0" time="50%" />
<o pos="closed" />

</transform>
</par>

</asdf>

60 https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/helix.asd
61 https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/sine-wave.asd

21

https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/helix.asd
https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/sine-wave.asd

6.5 Lissajous Figures

Once we have sinusoidal oscillations (or at least something similar), we can make Lissajous figures62,
as shown in lissajous.asd63:

<asdf version="0.4">
<par repeat="2">

<clip id="ukulele" file="audio/ukewave.ogg" vol="0.3" />
<par repeat="3">

<transform id="left-right" apply-to="ukulele">
<o pos="-2 0" speed="0" />
<o pos="2 0" time="50%" speed="0" />
<o pos="closed" />

</transform>
<seq repeat="3">

<transform id="front-back" apply-to="ukulele">
<o pos="0 0" />
<o pos="0 2" time="25%" speed="0" />
<o pos="0 -2" time="75%" speed="0" />
<o pos="closed" />

</transform>
</seq>

</par>
</par>

</asdf>

7 Implementation Notes

The information in this section is not needed in order to create audio scenes with the ASDF.

When implementing an ASDF library, it is recommended to convert all rotation angles as soon as
possible into rotation matrices or quaternions, as the following sections show.

The following section was generated from doc/rotation-matrices.ipynb .

7.1 Converting ASDF Rotations to Rotation Matrices

To rotate objects in an ASDF scene, you can use azimuth, elevation and roll angles (page 11), for example
like this:

<... rot="-30 12.5 5">

The used coordinate system conventions are shown in the section about position and orientation (page 3).

In this section we show how these angles can be converted to rotation matrices64, in order to practically
use those rotations in software.

There isn’t just a single way to choose rotation angles in 3D space, in fact, there are very many ways
to do this, many of them leading to different rotation matrices.

Here’s a (hopefully somewhat complete) overview about the possible options and the choices taken
by the ASDF:

62 https://en.wikipedia.org/wiki/Lissajous_curve
63 https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/lissajous.asd
64 https://en.wikipedia.org/wiki/Rotation_matrix

22

https://en.wikipedia.org/wiki/Lissajous_curve
https://github.com/AudioSceneDescriptionFormat/asdf/blob/b9ac7dc/doc/scenes/lissajous.asd
https://en.wikipedia.org/wiki/Rotation_matrix

• Right-handed vs. left-handed coordinate system65: The ASDF uses a right-handed one.

• Direction of the axes: The ASDF uses the ENU (east, north, up) convention.

• Euler angles vs. Tait–Bryan angles66: The ASDF uses a variation of Tait–Bryan.

• There are many possible conventions67 for the order of angles and which axes they rotate around:
The ASDF conventions are shown in detail below.

• “intrinsic”68 vs. “extrinsic”69 = “local” vs. “global” reference system: This sounds complicated,
but it’s really just about the order of transformations. See below for details.

• Rotating vectors (= “active” = “alibi”) vs. rotating the coordinate system (= “passive” =
“alias”)70: In the following derivations we consider the active situation, but a similar derivation
can be done for the passive case.
In case you are wondering: the functions sympy.matrices.rot_axis1()71 etc. do the latter,
therefore we cannot use them here (at least not without some further manipulations).

• Rotation matrices can be derived for pre-multiplication with column vectors vs. post-
multiplication with row vectors72: We are using column vectors here, but (different) matrices
could be derived for use with row vectors.

Let’s get started then, shall we?

First we import SymPy73, which is great for doing this kind of symbolic derivations:

[1]: import sympy as sp

We have to define our three input angles. These are often called azimuth/elevation/roll, or yaw/pitch/roll,
or heading/elevation/bank.

Here we just use the greek letters α, β and γ:

[2]: alpha, beta, gamma = sp.symbols('alpha beta gamma')

The ASDF uses an ENU (east, north, up) coordinate system and the reference (“forward”) direction is
north, i.e. along the positive y-axis.

[3]: alpha

[3]: α

The azimuth angle α is:

• zero when pointing north (i.e. along the positive y-axis),

• rotating around the z-axis (which points up)

• positive when rotating towards west (right hand rule74).

[4]: beta

[4]: β

The elevation angle β is:

65 https://en.wikipedia.org/wiki/Coordinate_system
66 https://en.wikipedia.org/wiki/Euler_angles
67 https://en.wikipedia.org/wiki/Axes_conventions
68 https://en.wikipedia.org/wiki/Euler_angles#Conventions_by_intrinsic_rotations
69 https://en.wikipedia.org/wiki/Euler_angles#Conventions_by_extrinsic_rotations
70 https://en.wikipedia.org/wiki/Active_and_passive_transformation
71 https://docs.sympy.org/latest/modules/matrices/matrices.html#sympy.matrices.dense.rot_axis1

72 https://en.wikipedia.org/wiki/Rotation_matrix#Ambiguities
73 https://www.sympy.org/
74 https://en.wikipedia.org/wiki/Right-hand_rule

23

https://en.wikipedia.org/wiki/Coordinate_system
https://en.wikipedia.org/wiki/Euler_angles
https://en.wikipedia.org/wiki/Axes_conventions
https://en.wikipedia.org/wiki/Euler_angles#Conventions_by_intrinsic_rotations
https://en.wikipedia.org/wiki/Euler_angles#Conventions_by_extrinsic_rotations
https://en.wikipedia.org/wiki/Active_and_passive_transformation
https://en.wikipedia.org/wiki/Active_and_passive_transformation
https://docs.sympy.org/latest/modules/matrices/matrices.html#sympy.matrices.dense.rot_axis1
https://en.wikipedia.org/wiki/Rotation_matrix#Ambiguities
https://en.wikipedia.org/wiki/Rotation_matrix#Ambiguities
https://www.sympy.org/
https://en.wikipedia.org/wiki/Right-hand_rule

• zero in the horizontal plane,

• rotating around the local x-axis

• positive when the nose goes up (right hand rule).

[5]: gamma

[5]: γ

The roll angle γ is:

• zero when the top of the object points to the zenith (which is just the normal “upright” orienta-
tion),

• rotating around the local y-axis

• positive when the object is leaning towards starboard75 (right hand rule).

The definitions above use the intrinsic way of describing the rotations (i.e. relative to local coordinate
axes).

If you want to use the extrinsic way, you can use the same angles. You just have to choose the right
order of global rotations: First roll, then elevation, then azimuth. We will be using the extrinsic style
below.

Let’s also define the cartesian components of a vector a:

[6]: a_x, a_y, a_z = sp.symbols('a_x:z')

We will need those only during the derivation, they will not appear in the final equations.

Azimuth: Rotation around the z-Axis

Writing the vector a in cylindrical coordinates rz (radius), ϕz (angle) and az (height):

[7]: r_z, phi_z = sp.symbols('r_z phi_z')

. . . we can get its cartesian coordinates like this:

[8]: a = sp.Matrix([
r_z * sp.cos(phi_z),
r_z * sp.sin(phi_z),
a_z,

])
a

[8]:
rz cos (ϕz)

rz sin (ϕz)
az

We are using column vectors here, that means we are searching for a rotation matrix to left-multiply
this vector in order to get the vector b.

To get a representation of the vector b, let’s rotate a by an azimuth angle α:

[9]: b = sp.Matrix([
r_z * sp.cos(phi_z + alpha),
r_z * sp.sin(phi_z + alpha),
a_z,

(continues on next page)

75 https://en.wikipedia.org/wiki/Port_and_starboard

24

https://en.wikipedia.org/wiki/Port_and_starboard

(continued from previous page)

])
b

[9]:
rz cos (α + ϕz)

rz sin (α + ϕz)
az

Note that az is not affected by the rotation.

We can use some trigonometric identities to expand this:

[10]: b = b.expand(trig=True)
b

[10]:
−rz sin (α) sin (ϕz) + rz cos (α) cos (ϕz)

rz sin (α) cos (ϕz) + rz sin (ϕz) cos (α)
az

. . . and re-write it using the (cartesian) coordinates of vector a: ax, ay and az:

[11]: b = b.subs(list(zip(a, [a_x, a_y, a_z])))
b

[11]:
ax cos (α)− ay sin (α)

ax sin (α) + ay cos (α)
az

Remember, we are looking for a rotation matrix that, when a is left-multiplied by it, yields b.

In other words (or rather symbols):

bx
by
bz

 = Rz(α)

ax
ay
az

Given the components of b shown above, we can simply pick out the matrix elements.

Or we let SymPy do it:

[12]: Rz = sp.Matrix([[line.coeff(var) for var in [a_x, a_y, a_z]]
for line in b])

Rz

[12]:
cos (α) − sin (α) 0

sin (α) cos (α) 0
0 0 1

That’s it!

Let’s do a little sanity check, rotating the y unit vector (i.e. “looking straight ahead”) by 90 degrees to
the left:

[13]: Rz.subs(alpha, sp.pi / 2) * sp.Matrix([0, 1, 0])

[13]:
−1

0
0

This yields the negative x unit vector, which points westwards. That sounds about right!

25

Elevation: Rotation around the (local) x-Axis

Now the same thing, just using a different vector a.

[14]: r_x, phi_x = sp.symbols('r_x phi_x')
a = sp.Matrix([

a_x,
r_x * sp.cos(phi_x),
r_x * sp.sin(phi_x),

])
a

[14]:
 ax

rx cos (ϕx)
rx sin (ϕx)

Let’s rotate a by the elevation angle β to get a vector b:

[15]: b = sp.Matrix([
a_x,
r_x * sp.cos(phi_x + beta),
r_x * sp.sin(phi_x + beta),

])
b

[15]:
 ax

rx cos (β + ϕx)
rx sin (β + ϕx)

Again, expand using trig identities and substitute a back in:

[16]: b = b.expand(trig=True).subs(list(zip(a, [a_x, a_y, a_z])))
b

[16]:
 ax

ay cos (β)− az sin (β)
ay sin (β) + az cos (β)

. . . and obtain a matrix Rx(β) that transforms a into b:

[17]: Rx = sp.Matrix([[line.coeff(var) for var in [a_x, a_y, a_z]]
for line in b])

Rx

[17]:
1 0 0

0 cos (β) − sin (β)
0 sin (β) cos (β)

And again a sanity check, this time using an elevation of 90 degrees:

[18]: Rx.subs(beta, sp.pi / 2) * sp.Matrix([0, 1, 0])

[18]:
0

0
1

The result is a vector pointing up, which is what we expected, didn’t we?

26

Roll: Rotation around the (local) y-Axis

Doing very similar steps as before:

[19]: r_y, phi_y = sp.symbols('r_y phi_y')
a = sp.Matrix([

r_y * sp.sin(phi_y),
a_y,
r_y * sp.cos(phi_y),

])
a

[19]:
ry sin

(
ϕy

)
ay

ry cos
(
ϕy

)

[20]: b = sp.Matrix([
r_y * sp.sin(phi_y + gamma),
a_y,
r_y * sp.cos(phi_y + gamma),

])
b

[20]:
ry sin

(
γ + ϕy

)
ay

ry cos
(
γ + ϕy

)

[21]: b = b.expand(trig=True).subs(list(zip(a, [a_x, a_y, a_z])))
b

[21]:
 ax cos (γ) + az sin (γ)

ay
−ax sin (γ) + az cos (γ)

[22]: Ry = sp.Matrix([[line.coeff(var) for var in [a_x, a_y, a_z]]

for line in b])
Ry

[22]:
 cos (γ) 0 sin (γ)

0 1 0
− sin (γ) 0 cos (γ)

Sanity check: Applying a roll angle of 90 degrees to a vector pointing up . . .

[23]: Ry.subs(gamma, sp.pi / 2) * sp.Matrix([0, 0, 1])

[23]:
1

0
0

. . . leads to a vector pointing east. This is what we wanted.

27

Combining all Axes

As mentioned above, we have to choose the right sequence of (global) rotations: first roll, then elevation,
then azimuth.

Note that we start with Ry (roll) on the right, and then left-apply Rx (elevation) and then left-apply Rz
(azimuth).

You should read this from right to left:

[24]: R = Rz * Rx * Ry
R

[24]:
− sin (α) sin (β) sin (γ) + cos (α) cos (γ) − sin (α) cos (β) sin (α) sin (β) cos (γ) + sin (γ) cos (α)

sin (α) cos (γ) + sin (β) sin (γ) cos (α) cos (α) cos (β) sin (α) sin (γ)− sin (β) cos (α) cos (γ)
− sin (γ) cos (β) sin (β) cos (β) cos (γ)

That’s it, that’s our rotation matrix!

Copy this to use it with SymPy (you’ll have to import Matrix, sin and cos and define alpha, beta
and gamma):

[25]: print(R)

Matrix([[-sin(alpha)*sin(beta)*sin(gamma) + cos(alpha)*cos(gamma), -
↪→sin(alpha)*cos(beta), sin(alpha)*sin(beta)*cos(gamma) + sin(gamma)*cos(alpha)],␣
↪→[sin(alpha)*cos(gamma) + sin(beta)*sin(gamma)*cos(alpha), cos(alpha)*cos(beta),␣
↪→sin(alpha)*sin(gamma) - sin(beta)*cos(alpha)*cos(gamma)], [-
↪→sin(gamma)*cos(beta), sin(beta), cos(beta)*cos(gamma)]])

If you want to use it with NumPy, you can copy this (you’ll have to import numpy and define alpha,
beta and gamma):

[26]: from sympy.printing.numpy import NumPyPrinter
print(NumPyPrinter().doprint(R))

numpy.array([[-numpy.sin(alpha)*numpy.sin(beta)*numpy.sin(gamma) + numpy.
↪→cos(alpha)*numpy.cos(gamma), -numpy.sin(alpha)*numpy.cos(beta), numpy.
↪→sin(alpha)*numpy.sin(beta)*numpy.cos(gamma) + numpy.sin(gamma)*numpy.
↪→cos(alpha)], [numpy.sin(alpha)*numpy.cos(gamma) + numpy.sin(beta)*numpy.
↪→sin(gamma)*numpy.cos(alpha), numpy.cos(alpha)*numpy.cos(beta), numpy.
↪→sin(alpha)*numpy.sin(gamma) - numpy.sin(beta)*numpy.cos(alpha)*numpy.
↪→cos(gamma)], [-numpy.sin(gamma)*numpy.cos(beta), numpy.sin(beta), numpy.
↪→cos(beta)*numpy.cos(gamma)]])

Rotation Matrix to Angles

You may ask: how can we get back from the rotation matrix to our angles?

If you look at the matrix R above, you see that one component only depends on one variable. Namely,
the component in the last row, middle column:

[27]: R[2, 1]

[27]: sin (β)

Therefore, we can get the value of β simply by taking the arc-sine of this matrix element. In a numeric
calculation, this would probably look something like:

28

beta = asin(R[2, 1])

Note:

The argument of the asin() function has to be in the domain [-1.0; 1.0] (see https://en.
cppreference.com/w/c/numeric/math/asin).

Due to rounding errors, the value might be slightly outside this range, which would lead to a return
value of NaN.

Make sure to handle this case, e.g. by re-normalizing the rotation matrix.

The rest of the matrix components depend on more than one variable, but there are a few elements
that depend only on two variables.

If we divide the top middle component (multiplied by −1) by the one below:

[28]: -R[0, 1] / R[1, 1]

[28]: sin (α)

cos (α)

. . . we get an expression that only depends on α.

We can simplify this expression:

[29]: _.simplify()

[29]: tan (α)

Therefore, to get the angle α, we only have to calculate −R0,1
R1,1

and take the arc-tangent of the result.

To get the appropriate quadrant of the result, we will use the function atan2()76 in numeric calculations:

alpha = atan2(-R[0, 1], R[1, 1])

We can do a similar thing to get γ:

[30]: -R[2, 0] / R[2, 2]

[30]: sin (γ)

cos (γ)

[31]: _.simplify()

[31]: tan (γ)

Similar to the above, we take the arc-tangent of −R2,0
R2,2

to get the angle γ.

gamma = atan2(-R[2, 0], R[2, 2])

76 https://en.wikipedia.org/wiki/Atan2

29

https://en.cppreference.com/w/c/numeric/math/asin
https://en.cppreference.com/w/c/numeric/math/asin
https://en.wikipedia.org/wiki/Atan2

Gimbal Lock

But wait a second, we might have a problem: the dreaded gimbal lock77!

Let’s consider the case where β = 90 degrees:

[32]: R1 = R.subs(beta, sp.pi/2)
R1

[32]:
− sin (α) sin (γ) + cos (α) cos (γ) 0 sin (α) cos (γ) + sin (γ) cos (α)

sin (α) cos (γ) + sin (γ) cos (α) 0 sin (α) sin (γ)− cos (α) cos (γ)
0 1 0

If we try to calculate α and γ like above, we end up calculating

atan2(0, 0)

Sadly, that is not defined:

[33]: sp.atan2(0, 0)

[33]: NaN

Note:

If the implementation supports IEEE floating-point arithmetic (IEC 60559), no NaN is returned (except
if one of the inputs is NaN), see https://en.cppreference.com/w/c/numeric/math/atan2.

In this case, atan2() will return ±0 or ±π (which is generally not correct).

Depending on your use case, however, this might be good enough. If not, keep reading below!

We can try to find alternative equations for α and γ from the hitherto unused matrix elements (but
let’s simplify the matrix first):

[34]: R1 = sp.trigsimp(R1)
R1

[34]:
cos (α + γ) 0 sin (α + γ)

sin (α + γ) 0 − cos (α + γ)
0 1 0

[35]: sp.simplify(R1[1, 0] / R1[0, 0])

[35]: tan (α + γ)

[36]: sp.simplify(R1[0, 2] / -R1[1, 2])

[36]: tan (α + γ)

There is no unique solution to these equations. You can freely choose either α or γ and use that to
calculate the other angle.

A very similar thing happens for β = −90 degrees:

[37]: R2 = R.subs(beta, -sp.pi/2)
R2

77 https://en.wikipedia.org/wiki/Gimbal_lock

30

https://en.wikipedia.org/wiki/Gimbal_lock
https://en.cppreference.com/w/c/numeric/math/atan2

[37]:
sin (α) sin (γ) + cos (α) cos (γ) 0 − sin (α) cos (γ) + sin (γ) cos (α)

sin (α) cos (γ)− sin (γ) cos (α) 0 sin (α) sin (γ) + cos (α) cos (γ)
0 −1 0

[38]: R2 = sp.trigsimp(R2)

R2

[38]:
cos (α − γ) 0 − sin (α − γ)

sin (α − γ) 0 cos (α − γ)
0 −1 0

[39]: sp.simplify(R2[1, 0] / R2[0, 0])

[39]: tan (α − γ)

[40]: sp.simplify(-R2[0, 2] / R2[1, 2])

[40]: tan (α − γ)

Again, there is no unique solution. You can freely choose one of the angles and then calculate the
other one.

The easiest way to avoid this whole gimbal lock problem, is simply to never convert rotation matrices
to angles.
. doc/rotation-matrices.ipynb ends here.

The following section was generated from doc/quaternions.ipynb .

7.2 Converting ASDF Rotations to Quaternions

This notebook shows the same thing as the notebook about rotation matrices (page 22), just using quater-
nions instead of rotation matrices. For more detailed explanations, have a look over there.

You might be tempted to use the equations from Wikipedia78, but those use different conventions for
axes and angles! The resulting equations will have a similar structure but will not be quite identical.

With the code below, any convention can be calculated by adapting

• the pairing of angles with their corresponding axes

• the sign of angles (or direction of axes) according to handedness

• the order of combining the individual axis/angle quaternions

[1]: import sympy as sp

[2]: from sympy.algebras import Quaternion

[3]: alpha, beta, gamma = sp.symbols('alpha beta gamma')

78 https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles#Euler_angles_(in_3-2-1_sequence)
_to_quaternion_conversion

31

https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles#Euler_angles_(in_3-2-1_sequence)_to_quaternion_conversion

Azimuth: Rotation around the z-Axis

[4]: q_z = Quaternion.from_axis_angle((0, 0, 1), alpha)
q_z

[4]: cos
(α

2

)
+ 0i + 0j + sin

(α

2

)
k

Example: Rotating the y unit vector (i.e. “looking north”) by 90 degrees to the left:

[5]: Quaternion.rotate_point((0, 1, 0), q_z.subs(alpha, sp.pi / 2))

[5]: (-1, 0, 0)

As expected, this yields the negative x unit vector, which points westwards.

Elevation: Rotation around the (local) x-Axis

[6]: q_x = Quaternion.from_axis_angle((1, 0, 0), beta)
q_x

[6]: cos
(

β

2

)
+ sin

(
β

2

)
i + 0j + 0k

Example: Applying 90 degrees of elevation to the y unit vector:

[7]: Quaternion.rotate_point((0, 1, 0), q_x.subs(beta, sp.pi / 2))

[7]: (0, 0, 1)

As expected, this yields a vector pointing up.

Roll: Rotation around the (local) y-Axis

[8]: q_y = Quaternion.from_axis_angle((0, 1, 0), gamma)
q_y

[8]: cos
(γ

2

)
+ 0i + sin

(γ

2

)
j + 0k

Example: Applying a roll angle of 90 degrees to a vector pointing up:

[9]: Quaternion.rotate_point((0, 0, 1), q_y.subs(gamma, sp.pi / 2))

[9]: (1, 0, 0)

As expected, this yields a vector pointing east.

32

Combining all Axes

This is easy, we only have to make sure to use the right order. As with rotation matrices, you should
read this from right to left (first roll, then elevation, then azimuth):

[10]: q = q_z * q_x * q_y
q

[10]:
(
− sin

(α

2

)
sin

(
β

2

)
sin

(γ

2

)
+ cos

(α

2

)
cos

(
β

2

)
cos

(γ

2

))
+(

− sin
(α

2

)
sin

(γ

2

)
cos

(
β

2

)
+ sin

(
β

2

)
cos

(α

2

)
cos

(γ

2

))
i +(

sin
(α

2

)
sin

(
β

2

)
cos

(γ

2

)
+ sin

(γ

2

)
cos

(α

2

)
cos

(
β

2

))
j +(

sin
(α

2

)
cos

(
β

2

)
cos

(γ

2

)
+ sin

(
β

2

)
sin

(γ

2

)
cos

(α

2

))
k

If you want to copy-paste this:

[11]: print(q)

(-sin(alpha/2)*sin(beta/2)*sin(gamma/2) + cos(alpha/2)*cos(beta/2)*cos(gamma/2))␣
↪→+ (-sin(alpha/2)*sin(gamma/2)*cos(beta/2) + sin(beta/2)*cos(alpha/2)*cos(gamma/
↪→2))*i + (sin(alpha/2)*sin(beta/2)*cos(gamma/2) + sin(gamma/2)*cos(alpha/
↪→2)*cos(beta/2))*j + (sin(alpha/2)*cos(beta/2)*cos(gamma/2) + sin(beta/
↪→2)*sin(gamma/2)*cos(alpha/2))*k

But you should probably pre-calculate the used terms in order to avoid repeated evaluation of the
same functions. You could try something like this, for example:

[12]: q.subs([
(sp.sin(alpha/2), sp.symbols('s_alpha')),
(sp.sin(beta/2), sp.symbols('s_beta')),
(sp.sin(gamma/2), sp.symbols('s_gamma')),
(sp.cos(alpha/2), sp.symbols('c_alpha')),
(sp.cos(beta/2), sp.symbols('c_beta')),
(sp.cos(gamma/2), sp.symbols('c_gamma')),

])

[12]:
(
cαcβcγ − sαsβsγ

)
+

(
cαcγsβ − cβsαsγ

)
i +

(
cαcβsγ + cγsαsβ

)
j +

(
cαsβsγ + cβcγsα

)
k

[13]: print(_)

(c_alpha*c_beta*c_gamma - s_alpha*s_beta*s_gamma) + (c_alpha*c_gamma*s_beta - c_
↪→beta*s_alpha*s_gamma)*i + (c_alpha*c_beta*s_gamma + c_gamma*s_alpha*s_beta)*j +␣
↪→(c_alpha*s_beta*s_gamma + c_beta*c_gamma*s_alpha)*k

33

Quaternion to Rotation Matrix

Just to make sure the result is the same as in the notebook about rotation matrices (page 28), let’s calculate
the rotation matrix from our quaternion.

For some reason, SymPy seems to need two simplification steps for this . . .

[14]: R = sp.trigsimp(sp.trigsimp(q.to_rotation_matrix()))
R

[14]:
− sin (α) sin (β) sin (γ) + cos (α) cos (γ) − sin (α) cos (β) sin (α) sin (β) cos (γ) + sin (γ) cos (α)

sin (α) cos (γ) + sin (β) sin (γ) cos (α) cos (α) cos (β) sin (α) sin (γ)− sin (β) cos (α) cos (γ)
− sin (γ) cos (β) sin (β) cos (β) cos (γ)

Quaternion to ASDF rotations

Again, please note that the equations from Wikipedia79 use different conventions for axes and angles.

We already know how to convert a rotation matrix to ASDF angles, and we know how to convert a
quaternion to a rotation matrix, so let’s try that:

[15]: a, b, c, d = sp.symbols('a:d')

[16]: sp.simplify(sp.Quaternion(a, b, c, d).to_rotation_matrix())

[16]:

a2+b2−c2−d2

a2+b2+c2+d2
2(−ad+bc)

a2+b2+c2+d2
2(ac+bd)

a2+b2+c2+d2
2(ad+bc)

a2+b2+c2+d2
a2−b2+c2−d2

a2+b2+c2+d2
2(−ab+cd)

a2+b2+c2+d2
2(−ac+bd)

a2+b2+c2+d2
2(ab+cd)

a2+b2+c2+d2
a2−b2−c2+d2

a2+b2+c2+d2

Since we assume a unit quaternion, all the denominators are actually 1.

[17]: Rq = sp.simplify(sp.Quaternion(a, b, c, d).to_rotation_matrix().subs(a**2 + b**2␣
↪→+ c**2 + d**2, 1))
Rq

[17]:
a2 + b2 − c2 − d2 −2ad + 2bc 2ac + 2bd

2ad + 2bc a2 − b2 + c2 − d2 −2ab + 2cd
−2ac + 2bd 2ab + 2cd a2 − b2 − c2 + d2

The notebook about rotation matrices (page 28) shows how to obtain α, β and γ from this matrix.

We can get α from the top middle and the central element:

[18]: sp.atan2(-Rq[0, 1], Rq[1, 1])

[18]: atan2

(
2ad − 2bc, a2 − b2 + c2 − d2

)
[19]: print(_)

atan2(2*a*d - 2*b*c, a**2 - b**2 + c**2 - d**2)

The bottom middle element provides β:

[20]: sp.asin(Rq[2, 1])

79 https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles#Quaternion_to_Euler_angles_(in_
3-2-1_sequence)_conversion

34

https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles#Quaternion_to_Euler_angles_(in_3-2-1_sequence)_conversion

[20]: asin (2ab + 2cd)

[21]: print(_)

asin(2*a*b + 2*c*d)

Note:

As mentioned in the notebook about rotation matrices (page 28), the argument of the asin() function has
to be in the domain [-1.0; 1.0].

Make sure to handle this case, e.g. by re-normalizing the quaternion.

Finally, γ can be obtained from the bottom left and right elements:

[22]: sp.atan2(-Rq[2, 0], Rq[2, 2])

[22]: atan2

(
2ac − 2bd, a2 − b2 − c2 + d2

)
[23]: print(_)

atan2(2*a*c - 2*b*d, a**2 - b**2 - c**2 + d**2)

Gimbal Lock

As shown in the notebook about rotation matrices (page 30), there is a problem when β = ±90 degrees.

For β = 90 degrees (which means 2ab + 2cd = 1), we can obtain a value for α + γ:

[24]: sp.atan2(Rq[0, 2], -Rq[1, 2])

[24]: atan2 (2ac + 2bd, 2ab − 2cd)

[25]: print(_)

atan2(2*a*c + 2*b*d, 2*a*b - 2*c*d)

If we for example choose this value to be α, this will result in γ = 0.

Alternatively, we can use this expression:

[26]: sp.atan2(Rq[1, 0], Rq[0, 0])

[26]: atan2

(
2ad + 2bc, a2 + b2 − c2 − d2

)
[27]: print(_)

atan2(2*a*d + 2*b*c, a**2 + b**2 - c**2 - d**2)

For β = −90 degrees (which means 2ab + 2cd = −1), we can use the following expression for α + γ:

[28]: sp.atan2(-Rq[0, 2], Rq[1, 2])

[28]: atan2 (−2ac − 2bd,−2ab + 2cd)

[29]: print(_)

35

atan2(-2*a*c - 2*b*d, -2*a*b + 2*c*d)

Again, if we for example choose this value to be α, this will result in γ = 0.

Alternatively, we can use this expression:

[30]: sp.atan2(Rq[1, 0], Rq[0, 0])

[30]: atan2

(
2ad + 2bc, a2 + b2 − c2 − d2

)
[31]: print(_)

atan2(2*a*d + 2*b*c, a**2 + b**2 - c**2 - d**2)
. doc/quaternions.ipynb ends here.

36

	Introduction
	Position and Orientation
	Elements
	<asdf>
	<head> and <body>
	<source>
	File Inputs
	Live Inputs
	Transform Attributes

	<reference>
	<seq> and <par>
	repeat

	<clip> and <channel>
	repeat
	id
	source

	<transform>
	apply-to
	pos
	rot
	vol
	<o>
	time
	speed
	tension/continuity/bias
	Mixed Transform Attributes

	repeat
	dur
	Nested <transform>
	Creating Groups With <transform>

	<wait>
	dur

	Repetition
	ASDF Splines
	Position Splines
	Rotation Splines
	Volume Splines

	Special Shapes
	Square
	Circle
	Helix
	Sinusoidal Oscillation
	Lissajous Figures

	Implementation Notes
	Converting ASDF Rotations to Rotation Matrices
	Azimuth: Rotation around the z-Axis
	Elevation: Rotation around the (local) x-Axis
	Roll: Rotation around the (local) y-Axis
	Combining all Axes
	Rotation Matrix to Angles
	Gimbal Lock

	Converting ASDF Rotations to Quaternions
	Azimuth: Rotation around the z-Axis
	Elevation: Rotation around the (local) x-Axis
	Roll: Rotation around the (local) y-Axis
	Combining all Axes
	Quaternion to Rotation Matrix
	Quaternion to ASDF rotations
	Gimbal Lock

